Dylan K. Taylor ff28c982ac Kick out unnecessary Perlin class
the code in here isn't used anywhere except as a base for Simplex, so it makes more sense to flatten it and get rid of the crap.
2018-10-27 16:33:58 +01:00

473 lines
15 KiB
PHP
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?php
/*
*
* ____ _ _ __ __ _ __ __ ____
* | _ \ ___ ___| | _____| |_| \/ (_)_ __ ___ | \/ | _ \
* | |_) / _ \ / __| |/ / _ \ __| |\/| | | '_ \ / _ \_____| |\/| | |_) |
* | __/ (_) | (__| < __/ |_| | | | | | | | __/_____| | | | __/
* |_| \___/ \___|_|\_\___|\__|_| |_|_|_| |_|\___| |_| |_|_|
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* @author PocketMine Team
* @link http://www.pocketmine.net/
*
*
*/
declare(strict_types=1);
namespace pocketmine\level\generator\noise;
use pocketmine\utils\Random;
/**
* Generates simplex-based noise.
*
* This is a modified version of the freely published version in the paper by
* Stefan Gustavson at
* http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
*/
class Simplex extends Noise{
public static $grad3 = [
[1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0],
[1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1],
[0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1]
];
protected static $SQRT_3;
protected static $SQRT_5;
protected static $F2;
protected static $G2;
protected static $G22;
protected static $F3;
protected static $G3;
protected static $F4;
protected static $G4;
protected static $G42;
protected static $G43;
protected static $G44;
protected static $grad4 = [[0, 1, 1, 1], [0, 1, 1, -1], [0, 1, -1, 1], [0, 1, -1, -1],
[0, -1, 1, 1], [0, -1, 1, -1], [0, -1, -1, 1], [0, -1, -1, -1],
[1, 0, 1, 1], [1, 0, 1, -1], [1, 0, -1, 1], [1, 0, -1, -1],
[-1, 0, 1, 1], [-1, 0, 1, -1], [-1, 0, -1, 1], [-1, 0, -1, -1],
[1, 1, 0, 1], [1, 1, 0, -1], [1, -1, 0, 1], [1, -1, 0, -1],
[-1, 1, 0, 1], [-1, 1, 0, -1], [-1, -1, 0, 1], [-1, -1, 0, -1],
[1, 1, 1, 0], [1, 1, -1, 0], [1, -1, 1, 0], [1, -1, -1, 0],
[-1, 1, 1, 0], [-1, 1, -1, 0], [-1, -1, 1, 0], [-1, -1, -1, 0]];
protected static $simplex = [
[0, 1, 2, 3], [0, 1, 3, 2], [0, 0, 0, 0], [0, 2, 3, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 2, 3, 0],
[0, 2, 1, 3], [0, 0, 0, 0], [0, 3, 1, 2], [0, 3, 2, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 3, 2, 0],
[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
[1, 2, 0, 3], [0, 0, 0, 0], [1, 3, 0, 2], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 3, 0, 1], [2, 3, 1, 0],
[1, 0, 2, 3], [1, 0, 3, 2], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 0, 3, 1], [0, 0, 0, 0], [2, 1, 3, 0],
[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
[2, 0, 1, 3], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3, 0, 1, 2], [3, 0, 2, 1], [0, 0, 0, 0], [3, 1, 2, 0],
[2, 1, 0, 3], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3, 1, 0, 2], [0, 0, 0, 0], [3, 2, 0, 1], [3, 2, 1, 0]];
protected $offsetW;
public function __construct(Random $random, $octaves, $persistence, $expansion = 1){
$this->octaves = $octaves;
$this->persistence = $persistence;
$this->expansion = $expansion;
$this->offsetX = $random->nextFloat() * 256;
$this->offsetY = $random->nextFloat() * 256;
$this->offsetZ = $random->nextFloat() * 256;
$this->offsetW = $random->nextFloat() * 256;
for($i = 0; $i < 512; ++$i){
$this->perm[$i] = 0;
}
for($i = 0; $i < 256; ++$i){
$this->perm[$i] = $random->nextBoundedInt(256);
}
for($i = 0; $i < 256; ++$i){
$pos = $random->nextBoundedInt(256 - $i) + $i;
$old = $this->perm[$i];
$this->perm[$i] = $this->perm[$pos];
$this->perm[$pos] = $old;
$this->perm[$i + 256] = $this->perm[$i];
}
self::$SQRT_3 = sqrt(3);
self::$SQRT_5 = sqrt(5);
self::$F2 = 0.5 * (self::$SQRT_3 - 1);
self::$G2 = (3 - self::$SQRT_3) / 6;
self::$G22 = self::$G2 * 2.0 - 1;
self::$F3 = 1.0 / 3.0;
self::$G3 = 1.0 / 6.0;
self::$F4 = (self::$SQRT_5 - 1.0) / 4.0;
self::$G4 = (5.0 - self::$SQRT_5) / 20.0;
self::$G42 = self::$G4 * 2.0;
self::$G43 = self::$G4 * 3.0;
self::$G44 = self::$G4 * 4.0 - 1.0;
}
protected static function dot2D($g, $x, $y){
return $g[0] * $x + $g[1] * $y;
}
protected static function dot3D($g, $x, $y, $z){
return $g[0] * $x + $g[1] * $y + $g[2] * $z;
}
protected static function dot4D($g, $x, $y, $z, $w){
return $g[0] * $x + $g[1] * $y + $g[2] * $z + $g[3] * $w;
}
public function getNoise3D($x, $y, $z){
$x += $this->offsetX;
$y += $this->offsetY;
$z += $this->offsetZ;
// Skew the input space to determine which simplex cell we're in
$s = ($x + $y + $z) * self::$F3; // Very nice and simple skew factor for 3D
$i = (int) ($x + $s);
$j = (int) ($y + $s);
$k = (int) ($z + $s);
$t = ($i + $j + $k) * self::$G3;
// Unskew the cell origin back to (x,y,z) space
$x0 = $x - ($i - $t); // The x,y,z distances from the cell origin
$y0 = $y - ($j - $t);
$z0 = $z - ($k - $t);
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
if($x0 >= $y0){
if($y0 >= $z0){
$i1 = 1;
$j1 = 0;
$k1 = 0;
$i2 = 1;
$j2 = 1;
$k2 = 0;
} // X Y Z order
elseif($x0 >= $z0){
$i1 = 1;
$j1 = 0;
$k1 = 0;
$i2 = 1;
$j2 = 0;
$k2 = 1;
} // X Z Y order
else{
$i1 = 0;
$j1 = 0;
$k1 = 1;
$i2 = 1;
$j2 = 0;
$k2 = 1;
}
// Z X Y order
}else{ // x0<y0
if($y0 < $z0){
$i1 = 0;
$j1 = 0;
$k1 = 1;
$i2 = 0;
$j2 = 1;
$k2 = 1;
} // Z Y X order
elseif($x0 < $z0){
$i1 = 0;
$j1 = 1;
$k1 = 0;
$i2 = 0;
$j2 = 1;
$k2 = 1;
} // Y Z X order
else{
$i1 = 0;
$j1 = 1;
$k1 = 0;
$i2 = 1;
$j2 = 1;
$k2 = 0;
}
// Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
$x1 = $x0 - $i1 + self::$G3; // Offsets for second corner in (x,y,z) coords
$y1 = $y0 - $j1 + self::$G3;
$z1 = $z0 - $k1 + self::$G3;
$x2 = $x0 - $i2 + 2.0 * self::$G3; // Offsets for third corner in (x,y,z) coords
$y2 = $y0 - $j2 + 2.0 * self::$G3;
$z2 = $z0 - $k2 + 2.0 * self::$G3;
$x3 = $x0 - 1.0 + 3.0 * self::$G3; // Offsets for last corner in (x,y,z) coords
$y3 = $y0 - 1.0 + 3.0 * self::$G3;
$z3 = $z0 - 1.0 + 3.0 * self::$G3;
// Work out the hashed gradient indices of the four simplex corners
$ii = $i & 255;
$jj = $j & 255;
$kk = $k & 255;
$n = 0;
// Calculate the contribution from the four corners
$t0 = 0.6 - $x0 * $x0 - $y0 * $y0 - $z0 * $z0;
if($t0 > 0){
$gi0 = self::$grad3[$this->perm[$ii + $this->perm[$jj + $this->perm[$kk]]] % 12];
$n += $t0 * $t0 * $t0 * $t0 * ($gi0[0] * $x0 + $gi0[1] * $y0 + $gi0[2] * $z0);
}
$t1 = 0.6 - $x1 * $x1 - $y1 * $y1 - $z1 * $z1;
if($t1 > 0){
$gi1 = self::$grad3[$this->perm[$ii + $i1 + $this->perm[$jj + $j1 + $this->perm[$kk + $k1]]] % 12];
$n += $t1 * $t1 * $t1 * $t1 * ($gi1[0] * $x1 + $gi1[1] * $y1 + $gi1[2] * $z1);
}
$t2 = 0.6 - $x2 * $x2 - $y2 * $y2 - $z2 * $z2;
if($t2 > 0){
$gi2 = self::$grad3[$this->perm[$ii + $i2 + $this->perm[$jj + $j2 + $this->perm[$kk + $k2]]] % 12];
$n += $t2 * $t2 * $t2 * $t2 * ($gi2[0] * $x2 + $gi2[1] * $y2 + $gi2[2] * $z2);
}
$t3 = 0.6 - $x3 * $x3 - $y3 * $y3 - $z3 * $z3;
if($t3 > 0){
$gi3 = self::$grad3[$this->perm[$ii + 1 + $this->perm[$jj + 1 + $this->perm[$kk + 1]]] % 12];
$n += $t3 * $t3 * $t3 * $t3 * ($gi3[0] * $x3 + $gi3[1] * $y3 + $gi3[2] * $z3);
}
// Add contributions from each corner to get the noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * $n;
}
public function getNoise2D($x, $y){
$x += $this->offsetX;
$y += $this->offsetY;
// Skew the input space to determine which simplex cell we're in
$s = ($x + $y) * self::$F2; // Hairy factor for 2D
$i = (int) ($x + $s);
$j = (int) ($y + $s);
$t = ($i + $j) * self::$G2;
// Unskew the cell origin back to (x,y) space
$x0 = $x - ($i - $t); // The x,y distances from the cell origin
$y0 = $y - ($j - $t);
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
if($x0 > $y0){
$i1 = 1;
$j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else{
$i1 = 0;
$j1 = 1;
}
// upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
$x1 = $x0 - $i1 + self::$G2; // Offsets for middle corner in (x,y) unskewed coords
$y1 = $y0 - $j1 + self::$G2;
$x2 = $x0 + self::$G22; // Offsets for last corner in (x,y) unskewed coords
$y2 = $y0 + self::$G22;
// Work out the hashed gradient indices of the three simplex corners
$ii = $i & 255;
$jj = $j & 255;
$n = 0;
// Calculate the contribution from the three corners
$t0 = 0.5 - $x0 * $x0 - $y0 * $y0;
if($t0 > 0){
$gi0 = self::$grad3[$this->perm[$ii + $this->perm[$jj]] % 12];
$n += $t0 * $t0 * $t0 * $t0 * ($gi0[0] * $x0 + $gi0[1] * $y0); // (x,y) of grad3 used for 2D gradient
}
$t1 = 0.5 - $x1 * $x1 - $y1 * $y1;
if($t1 > 0){
$gi1 = self::$grad3[$this->perm[$ii + $i1 + $this->perm[$jj + $j1]] % 12];
$n += $t1 * $t1 * $t1 * $t1 * ($gi1[0] * $x1 + $gi1[1] * $y1);
}
$t2 = 0.5 - $x2 * $x2 - $y2 * $y2;
if($t2 > 0){
$gi2 = self::$grad3[$this->perm[$ii + 1 + $this->perm[$jj + 1]] % 12];
$n += $t2 * $t2 * $t2 * $t2 * ($gi2[0] * $x2 + $gi2[1] * $y2);
}
// Add contributions from each corner to get the noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * $n;
}
/**
* Computes and returns the 4D simplex noise for the given coordinates in
* 4D space
*
* @param float $x X coordinate
* @param float $y Y coordinate
* @param float $z Z coordinate
* @param float $w W coordinate
*
* @return float Noise at given location, from range -1 to 1
*/
/*public function getNoise4D($x, $y, $z, $w){
x += offsetX;
y += offsetY;
z += offsetZ;
w += offsetW;
n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
s = (x + y + z + w) * self::$F4; // Factor for 4D skewing
i = floor(x + s);
j = floor(y + s);
k = floor(z + s);
l = floor(w + s);
t = (i + j + k + l) * self::$G4; // Factor for 4D unskewing
X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
Y0 = j - t;
Z0 = k - t;
W0 = l - t;
x0 = x - X0; // The x,y,z,w distances from the cell origin
y0 = y - Y0;
z0 = z - Z0;
w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// The method below is a good way of finding the ordering of x,y,z,w and
// then find the correct traversal order for the simplex were in.
// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to add up binary bits
// for an integer index.
c1 = (x0 > y0) ? 32 : 0;
c2 = (x0 > z0) ? 16 : 0;
c3 = (y0 > z0) ? 8 : 0;
c4 = (x0 > w0) ? 4 : 0;
c5 = (y0 > w0) ? 2 : 0;
c6 = (z0 > w0) ? 1 : 0;
c = c1 + c2 + c3 + c4 + c5 + c6;
i1, j1, k1, l1; // The integer offsets for the second simplex corner
i2, j2, k2, l2; // The integer offsets for the third simplex corner
i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = simplex[c][0] >= 3 ? 1 : 0;
j1 = simplex[c][1] >= 3 ? 1 : 0;
k1 = simplex[c][2] >= 3 ? 1 : 0;
l1 = simplex[c][3] >= 3 ? 1 : 0;
// The number 2 in the "simplex" array is at the second largest coordinate.
i2 = simplex[c][0] >= 2 ? 1 : 0;
j2 = simplex[c][1] >= 2 ? 1 : 0;
k2 = simplex[c][2] >= 2 ? 1 : 0;
l2 = simplex[c][3] >= 2 ? 1 : 0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[c][0] >= 1 ? 1 : 0;
j3 = simplex[c][1] >= 1 ? 1 : 0;
k3 = simplex[c][2] >= 1 ? 1 : 0;
l3 = simplex[c][3] >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
x1 = x0 - i1 + self::$G4; // Offsets for second corner in (x,y,z,w) coords
y1 = y0 - j1 + self::$G4;
z1 = z0 - k1 + self::$G4;
w1 = w0 - l1 + self::$G4;
x2 = x0 - i2 + self::$G42; // Offsets for third corner in (x,y,z,w) coords
y2 = y0 - j2 + self::$G42;
z2 = z0 - k2 + self::$G42;
w2 = w0 - l2 + self::$G42;
x3 = x0 - i3 + self::$G43; // Offsets for fourth corner in (x,y,z,w) coords
y3 = y0 - j3 + self::$G43;
z3 = z0 - k3 + self::$G43;
w3 = w0 - l3 + self::$G43;
x4 = x0 + self::$G44; // Offsets for last corner in (x,y,z,w) coords
y4 = y0 + self::$G44;
z4 = z0 + self::$G44;
w4 = w0 + self::$G44;
// Work out the hashed gradient indices of the five simplex corners
ii = i & 255;
jj = j & 255;
kk = k & 255;
ll = l & 255;
gi0 = $this->perm[ii + $this->perm[jj + $this->perm[kk + $this->perm[ll]]]] % 32;
gi1 = $this->perm[ii + i1 + $this->perm[jj + j1 + $this->perm[kk + k1 + $this->perm[ll + l1]]]] % 32;
gi2 = $this->perm[ii + i2 + $this->perm[jj + j2 + $this->perm[kk + k2 + $this->perm[ll + l2]]]] % 32;
gi3 = $this->perm[ii + i3 + $this->perm[jj + j3 + $this->perm[kk + k3 + $this->perm[ll + l3]]]] % 32;
gi4 = $this->perm[ii + 1 + $this->perm[jj + 1 + $this->perm[kk + 1 + $this->perm[ll + 1]]]] % 32;
// Calculate the contribution from the five corners
t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if(t0 < 0){
n0 = 0.0;
}else{
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if(t1 < 0){
n1 = 0.0;
}else{
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if(t2 < 0){
n2 = 0.0;
}else{
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if(t3 < 0){
n3 = 0.0;
}else{
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if(t4 < 0){
n4 = 0.0;
}else{
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}*/
}